
9 0 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

OSS packages make actual adoption a real
challenge. This article presents a straight-
forward and practical roadmap to navigate
your OSS adoption considerations.

We do not have a universally accepted def-
inition of OSS. For instance, Netscape, Sun
Microsystems, and Apple recently introduced
what they call “community-source” versions
of their popular software—the Mozilla proj-
ect, Solaris, and MacOS X, respectively.5,6

Such efforts, while validating the OSS con-
cept, also make their inclusion into the OSS
community a potential topic for contention.
Here, we will use the loose definition of OSS
that includes publicly available source code
and community-source software.

Requirements-oriented
considerations

Commercial IT development today is
vastly different from that of 10 years ago; all-

encompassing, proprietary in-house software
development has effectively disappeared.
Many efforts now focus on integrating off-
the-shelf software packages to achieve partic-
ular software implementation goals.

You must consider many requirements
when choosing a suitable software package,
regardless of whether the candidate is open
source or commercial.5–7 Most of these cri-
teria are common and have been exten-
sively studied. We will not cover the follow-
ing important adoption criteria because
they do not distinguish between OSS and
commercial-software candidates: functional
capability, efficiency, speed of execution,
and organizational standards and prefer-
ences. Specifically, our criteria apply a
product-oriented evaluation framework in
which we can compare and analyze distinc-
tive features of OSS candidates.5,7 We will
emphasize the technical and managerial

feature
Open Source Software
Adoption: A Status Report

Huaiqing Wang, City University of Hong Kong

Chen Wang, StockSmart

Open source
software has
emerged from
the hacker
community, but
because of many
misgivings and
myths regarding
its maturity,
making informed
adoption
decisions is hard.
Systematically
applying
requirements-
oriented criteria
to open source
software offers
a practical
roadmap for
navigating this
new landscape.

U
sing the right software is increasingly critical to project success,1,2

but the choices keep getting wider and more confusing. Open
source software has entered the mix, leaving the traditional
confines of the hacker community and entering large-scale, well-

publicized applications.3 However, although some argue that it is ready for
wide-scale commercial adaptation and deployment,4 the myriad number of

open source

requirements in which the nature of OSS is
particularly relevant. These two aspects cor-
respond to the two classes of stakeholders
in commercial IT efforts.

However, our aim is to outline the vari-
ous requirement considerations rather than
present their relative importance—you must
prioritize the criteria with respect to your
particular project. For instance, in the case
of a legacy-system data conversion project,
future upgradability might be moot but high
reliability would be critical.

Technical requirements
A potential OSS would have to be evalu-

ated according to several technical require-
ments involving architectural, development,
and operational issues.

Availability of technical support
To adopt an OSS candidate in a commercial

IT effort, you must have commercial-grade
technical support available (at reasonable
cost). This includes training, documenta-
tion, real-time support, bug fixes, and pro-
fessional consulting as needed. To enable
the development team to get off to a quick
and smooth start, having a binary distri-
bution of the OSS widely available is
preferable so that the initial familiariza-
tion process can occur seamlessly.

Future functional upgradability
If the target application is to be opera-

tional, maintained, and extendable, the new
software must be upgradable to provide ad-
ditional capabilities. As a result, the current
and future status of your OSS’s develop-
ment becomes a significant factor, because
continuous development and bug fixing en-
able future upgrade capabilities. In addi-
tion, backward compatibility is important
so that future versions of the OSS require
minimal recoding and reintegration with ex-
isting system functionality.

Open-standard compatibility
For a large and complex IT project, all

the components must adhere to a particular
open standard or protocol. It is insufficient
that the OSS adhere solely to the various
open standards at any point in time. It must
also have continuous development momen-
tum to adhere to future revisions of the
standards as they evolve.

Customizability and extensibility
For an OSS candidate to be adopted, it

must be flexible enough to be customized or
integrated in widely different technical envi-
ronments. The package might also have to
be extended to include extra, potentially
proprietary functionality. While OSS is gen-
erally considered highly customizable and
extensible—as the source code is publicly
available—you must take into account the
complexity of the effort to make such mod-
ifications at the source level. Also, you must
consider the OSS package’s dependency on
operating systems, development tools, and
other software packages that might signifi-
cantly affect OSS extensibility. Whether or
not you can integrate the OSS with com-
mercial software is also an important factor,
because all the software must be able to be
integrated with other software packages.

High reliability
For an OSS candidate to be considered

operationally robust and highly reliable, it
must have been operational in a large num-
ber of applications and its performance
evaluated and reviewed. For critical sys-
tems, you would be prudent to adopt soft-
ware that has been widely used commer-
cially instead of one that has yet to gain
sufficient operational data and use analysis.

Management requirements
From a project management standpoint,

a potential open source or commercial can-
didate would have to meet various resource
allocation, licensing, and maintenance re-
quirements to be adopted.

Budgetary
For the most part, OSS is considered free

in the sense that generally no or minimal
costs (for example, shipping and handling)
are involved. However, there are indirect
costs, including development, technical sup-
port, and maintenance efforts. For most IT
projects, indirect costs can grow larger than
the original package purchase cost.

Development team expertise
It is critical to consider the development

team’s existing expertise with Unix, Perl, or
other OSS technologies. Lack of familiarity
here would require extensive team retrain-
ing and the adoption of not only new soft-

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 91

Our criteria
apply a

product-
oriented

evaluation
framework in
which we can
compare and

analyze
distinctive
features of

open source
software

candidates.

ware but a new development philosophy as
a whole—resulting in significant cost and
resource consumption.

Licensing and project scope
Adopting OSS is not free from the terms

set forth by software licenses. OSS products
have several different types of license, each
of which imposes a different set of restric-
tions that could potentially impede critical
project capabilities such as internal reuse,
proprietary custom extensions, and resale.
Table 1 lists the following common types of
OS license: GPL (GNU Public License), per-
haps the most common one; LGPL (Library
GPL), a modified version of GPL applying
specifically to software libraries; BSD
(Berkeley Software Development), applying
mostly to derivatives and variants of BSD
Unix; and CPL (Community Public Li-
cense), a type of license typically found in
community versions of commercial software.
The licensing terms of your chosen software
will affect your current and future project
scope, such as internal use versus resale.

Long-term maintainability
Almost all operational IT projects must be

maintained over time, so it is important to
consider the complexity of maintaining the
software you adopt. OSS characteristics such
as development status, standard adherence,
and the availability of support all affect the
long-term manageability of your project.

Analyzing OSS characteristics
The following list describes 10 OSS char-

acteristics and the possible values we can as-
sign. By assigning a value to each of these
characteristics for a particular OSS, we can
specify that software’s capability to meet its
requirements. We did this with a representa-
tive collection of OSS that is either widely
used or widely noted in technical periodi-
cals, including the community-source ver-
sions of Sun’s Solaris and Apple’s Mac OS
X. Table 2 presents the resulting chart.

1. Technical support: the amount of avail-
able support for the OSS.
■ – Support limited to direct, ad hoc

individual developer support.
■ + Support based on community-

oriented group support.
■ ++ Support tied to one or more com-

mercial entities providing compre-
hensive support for the OSS (for ex-
ample, Red Hat provides complete
support for Linux, and Cygnus sup-
ports all GNU packages (interest-
ingly, Red Hat acquired Cygnus in
November 1999).

■ — No longer being developed or
supported.

2. Backward compatibility: the effort re-
quired by an existing system to maintain
compatibility with the OSS.
■ – OSS is either in its first stable re-

lease or its functionality has been
modified such that systems using a
previous version would require signif-
icant effort to upgrade to the current
one.

■ + A moderate effort is required to
upgrade to the current version.

■ ++ Virtually no effort is required to
upgrade to the current version.

3. Standard compatibility: The open stan-
dard that the OSS adheres to and that
multiple vendors have agreed to.
■ OSF (Open Software Foundation).
■ DNS (Domain Name System).
■ ANSI (American National Standards

Association).
■ LDAP (Lightweight Directory Access

Protocol).
■ SSL (Secure Sockets Layer).
■ SMTP (Simple Mail Transfer Protocol).
■ X11 (X-Windows Protocol).
■ HTTP (Hypertext Transfer Protocol).
■ HTML (Hypertext Markup Language).
■ SQL (Structured Query Language).
■ MIME (Multipurpose Internet Mail

Extensions).
■ N/A: does not follow any open standard.

9 2 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1

Table 1
Open Source Software Licenses and Their Effects

Can be mixed with Proprietary modifications Can be Allows proprietary
nonfree software can be made private relicensed licensing

GNU Public License Y N N N
Library GPL Y Y N N
Berkeley Software Development Y Y N N
Community Public License Y N N Y
Commercial Y Y N N

4. Binary availability: official or unofficial
binary distributions are available. Even
when an official distribution is widely
available, there might be extensive unoffi-
cial binary packages that do not receive
the same level of support and release up-
grades as the official source-level and bi-
nary packages.
■ Yes.
■ No.

5. Integration with commercial software:
the extent to which the OSS has inte-
grated with commercial software.
■ – Virtually no widely used com-

mercial software can be integrated
with the OSS.

■ + A moderate number of commer-
cial software can be integrated with
the OSS, but no commercial installa-
tion history exists.

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 93

BSD + ++ OSF Y + + n/a BSD Stable Y freebsd.org
Linux ++ + OSF Y + ++ n/a GPL Stable Y linux.org
Macintosh ++ – OSF Y – – n/a CPL Commercial Y apple.com
OS X (binary only) release
Solaris ++ ++ OSF Y ++ ++ n/a CPL Commercial n/a sun.com
(announced) (binary only) release

Bind + ++ DNS Y + ++ Unix BSD Stable Y isc.org/bind
Gnome + – n/a Y – + Linux, GPL Stable Y gnome.org

BSD
GNU CC ++ ++ ANSI Y ++ + Open GPL Stable Y gnu.org

platform
GNU Emacs ++ + n/a Y + + Unix GPL Stable Y gnu.org
GNU Make ++ ++ n/a Y + + Unix GPL Stable Y gnu.org
Java ++ + n/a Y (binary ++ ++ Open CPL Stable n/a javasoft.com

only) platform
KDE – – n/a Y – – Linux, BSD BSD Dev. release Y kde.org
Perl ++ + n/a Y ++ ++ Open BSD Stable N perl.org

platform
Sendmail ++ ++ SMTP Y + ++ Unix BSD Stable Y sendmail.com

(OS version)
Tk/Tcl ++ + n/a Y + – Open BSD Stable N scriptics.com

platform
X-Windows ++ ++ X11 Y (vendor ++ ++ Unix BSD (X) Stable N x.org

(vendor) supplied)

Gimp – – n/a Y – – Unix GPL Dev. release Y gimp.org
JDK ++ ++ n/a Y (binary ++ ++ Open CPL Stable n/a Javasoft.com

only) platform
LDAP – n/a LDAP N + – Unix BSD Disc. Y Defunct

(Netscape)
OpenLDAP – – LDAP N – – Open BSD Dev. release Y openldap.org
OpenSSL – + SSL N – – Open BSD Dev. release Y operssl.org
SSLeay –– + SSL N – – Unix BSD Disc. Y mozilla-crypto.

ssleay.org

Apache + ++ HTTP Y + ++ Open BSD Stable Y apache.org
Mozilla + + HTML Y ++ – Open CPL Stable release Y mozilla.org

platform (Netscape)
MySQL + + SQL Y – – Unix CPL Stable Y mysql.org

(Recent:GPL)
PHP + + n/a Y – – Open BSD Stable Y php.net

platform
Pine + + SMTP, Y – + Unix BSD Stable Y pine.org

MIME

Table 2
Open Source Software Characteristics

Te
ch

ni
ca

l s
up

po
rt

Ba
ck

w
ar

d
co

m
pa

tib
ili

ty

St
an

da
rd

co

m
pa

tib
ili

ty

Bi
na

ry

av
ai

la
bi

lit
y

In
te

gr
at

io
n

w
ith

co
m

m
er

ci
al

 S
W

Co
m

m
er

ci
al

ad
op

tio
n

Op
en

 s
ou

rc
e

de
pe

nd
en

cy

So
ft

w
ar

e
lic

en
se

Cu
rr

en
t

de
ve

lo
pm

en
t

st
at

us

Co
m

m
er

ci
al

su
bs

tit
ut

es

No
te

s

De
ve

lo
pm

en
t l

ib
ra

ry
Ap

pl
ic

at
io

n
en

vi
ro

nm
en

t
Op

er
at

in
g

sy
st

em
Technical Managerial

Ap
pl

ic
at

io
n

■ ++ Many commercial software inte-
gration possibilities are available and
have been deployed in commercial en-
vironments.

6. Commercial adoption: the extent to which
the OSS has been commercially adopted.
■ – Virtually no commercial entity

has adopted the OSS.
■ + A few commercial entities have

selected and installed the OSS.
■ ++ The OSS has a large installed

user base.
7. OS dependency: the specific operating

systems on which the OSS depends; if
available for virtually all major ones, it
is designated an open platform. Al-
though no OSS operating system is
compatible with any application de-
signed for commercial operating sys-
tems, almost all the OSS environments,
libraries, and applications have been
ported to commercial operating sys-
tems, except for the packages still under
development (KDE, Gnome, Gimp) and
Unix-specific applications (Bind, Pine).
■ Unix.
■ Linux.
■ BSD.
■ Open platform: available for virtually

all major operating systems, including
the various flavors of Unix (Linux,
BSD, Solaris, and others), Windows,
and Mac OS.

8. Software license: the OSS’s licensing
format. The differences between the
following types of licenses are the type of
modifications and integrations an imple-
mentation party is permitted to perform
on the OSS (see Table 1).

■ GPL (General Public License): ap-
plies to all OSS applications devel-
oped by the Gnu organization.

■ LGPL (Library GPL): covers the var-
ious libraries developed by the Gnu
organization.

■ BSD: includes all derivatives of the
BSD license, such as the X-Windows
license “X.”

■ CPL: includes various community-
source projects.

9. Current development status.
■ Development release: The OSS is still

being actively developed and features
added.

■ Stable: A stable, widely installed ver-
sion of the OSS exists, with ongoing
development efforts underway.

■ Discontinued: OSS development ef-
forts have effectively stopped.

10. Commercial substitutes: whether com-
mercial substitutes exist for the OSS.
■ Yes.
■ No.
■ N/A: commercial vendors offer com-

munity-source versions of the soft-
ware; there is a corresponding com-
mercial-software flavor, such as the
commercial Netscape Browsers and
the community-source version of
Mozilla.

If made a mere five years ago, Table 2
would have contained virtually no commer-
cial adoption or commercial-grade technical
support for almost any of the OSS reviewed.
Over the last five years, OSS has made giant
strides in improving overall stability, sup-
port, and compatibility (for more informa-
tion, see the related sidebar). Nevertheless,
only a minority of the representative OSS
set now have commercial-grade support and
commercial adoption. Continued improve-
ment in these areas will no doubt make
other OSS candidates competitive for adop-
tion in commercial IT projects.

Open source software has become a le-
gitimate choice for commercial adop-
tion, as its use in Internet applica-

tions shows. As OSS continues to mature, it
will play an increasing role in the software
industry.

What does this mean for the OSS devel-

9 4 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1

opensource.oreilly.com
Although the O’Reilly Associates Web site aims to provide an overview

of available books, it is also an excellent central location for general infor-
mation regarding the state of OSS.

www.redhat.com
Red Hat is an great centralized source of all OSS information related to

Linux (an open source version of Unix that is rapidly gaining popularity in
commercial and noncommercial environments). The site is geared to all
technical backgrounds.

www.sourceforge.net
SourceForge is a free service for technology-savvy users. The source

code for almost all current OSS is available here, except for well-estab-
lished OSS such as Apache, PHP, Linux, and the like. Be prepared to dive
directly into source code and source-related documentation.

For More Information

opment community? Besides jumping for joy, we hope
that our work reflects some of the areas that require im-
provement for a more rapid adoption of OSS by the com-
mercial IT entities. Announcements such as funding for
Covalent Technologies,8 a commercial venture targeted
specifically at supporting the commercial users of the
Apache Web server, show that the OSS community is pay-
ing increasing attention to improving support, licensing,
reliability, and other areas. We believe that such efforts
will ensure the continuing success and innovation of OSS
in the future.

References
1. C. DiBona, S. Ockman, and M. Stone, Open Sources: Voices from the

Open Source Revolution, O’Reilly & Associates, Cambridge, Mass., 1999.
2. E.S. Raymond, The Cathedral & the Bazaar, O’Reilly & Associates, Cam-

bridge, Mass., 1999.
3. “The Netcraft Web Server Survey,” Sept. 2000; www.netcraft.com/survey

(current 21 Feb. 2001).
4. T. O’Reilly, “Lessons from Open Source Software Development,” Comm.

ACM, vol. 42, no. 4, Apr. 1999, pp. 33–37.
5. A. Brown and K. Wallnau, “A Framework for Evaluating Software Tech-

nology,” IEEE Software, vol. 13, no. 5, Sept. 1996, pp. 39–49.
6. A. Schamp, “CM-Tool Evaluation and Selection,” IEEE Software, vol. 12,

no. 4, July 1995, pp. 114–118.

7. E.A.Giakoumakis and G. Xylomenos, “Evaluation and Selection Criteria for
Software Requirements Specification Standards,” Software Eng. J., Sept.
1996, pp. 307–319.

8. “The Venture Capital Report,” Forbes, 15 Dec. 1999, www.forbes.com/
1999/12/17/mu4_print.html (current 22 Feb. 2001).

About the Authors

Huaiqing Wang is an associate professor of information systems
at the City University of Hong Kong. He specializes in research and de-
velopment of intelligent systems and Web-based intelligent agents and
their e-business applications (such as multiagent-supported risk-moni-
toring systems, intelligent-agent-based knowledge management sys-
tems, modeling, and intelligent Web-based educational systems). He re-
ceived his PhD in computer science from the University of Manchester.
Contact him at the Dept. of Information Systems, City University of
Hong Kong, Kowloon, Hong Kong; iswang@is.cityu.edu.hk.

Chen Wang is chief technology officer for StockSmart, which pro-
vides aggregated real-time financial information. He was previously a
cofounder and CTO for FirstCircle. His primary industry-related research
interests include cryptography, Internet commerce, open source soft-
ware, privacy, and agent-based technologies. He has a BS in computer
science and has completed graduate work in information systems at the
University of Toronto. Contact him at StockSmart,116 John St., Suite
801, New York, NY 10005; cwang@stocksmart.com.

Articles and
ReviewersFO

R

Pu
bl

ica
tio

n:
 Ja

nu
ar

y/
Fe

br
ua

ry
 2

00
2

Su
bm

iss
io

n
de

ad
lin

e:
 3

1
Ju

ly
 2

00
1

Guest Editors: Anup K. Ghosh, anup.ghosh@computer.org; Chuck Howell, howell@mitre.org; and James Whittaker, jw@se.fit.edu

IEEE

CALLCALL
Software Security: Building Systems Securely from the Ground Up

Fragile and insecure software continues to threaten a society increasingly reliant on complex software systems, because most security breaches are made possible by software flaws. Engineering secure and robust software systemscan break the penetrate-and-patch cycle of software releases all too common today. Topics of interest for this special issue include:
• Case studies that help quantify common security risks • Testing for vulnerabilities• Security implications of programming languages and • Secure configuration and maintenancedevelopment tools • Developing trusted environments for running untrusted mobile code• Techniques for balancing security with other design goals • Secure mobile code programming paradigms• Extracting security requirements from software projects • Analyzing unknown software for malicious logic• Design for security • Intrusion-tolerant software architectures• Aspect-oriented programming for security • Application-based intrusion detection• Analyzing programs for vulnerabilities • Quantifying trade-offs in adding security during developmentArticles must not exceed 5,400 words including figures and tables, which count for 200 words each. Submissionswithin the theme’s scope will be peer-reviewed and edited. Be sure to include the name of the theme for which you aresubmitting. Please contact a guest editor for more information about the focus or to discuss a potential submission; please contact the magazine assistant at software@computer.org for author guidelines and submission details.

