臺北市地震災害潛勢分析與避難收容能量評估

周瑞生*

國立臺灣科技大學 營建工程系 教授

歐昱辰

國立臺灣科技大學 營建工程系 副教授

鄭敏元

國立臺灣科技大學 營建工程系 助理教授

鄭明淵

國立臺灣科技大學 營建工程系 教授

陳道平

臺北市政府消防局 減災規劃科 科長

李振銘

國立臺灣科技大學 營建工程系 研究助理

葉勁宏

國立臺灣科技大學 營建工程系 研究助理

摘要

臺灣位處環太平洋地震帶上,有感地震常年發生且次數頻仍,引致之災害可能造成政府及人民財產損失 甚而危害生命安全。臺北市為臺灣政經首都且人口密度高,受地震之衝擊評估貴為當前急需處理的首要議題。 本文利用 TELES 地震潛勢分析軟體,針對臺北市周圍的潛勢斷層進行地震事件模擬。根據擬定的五起不同地 震參數作用下,透由 TELES 的境況模擬分析理論,評估臺北市各行政區潛在的房屋損害棟數以及避難人數, 分析結果更進一步與市府目前規劃之臨時避難場所的收容能量進行比較。文末則提出結論與建議,期供相關 單位作為地震災害防救決策資訊之依據。

關鍵字:地震災害潛勢分析、臨時避難場所、收容能量、災害防救規劃、TELES

EARTHQUAKE-INDUCED POTENTIAL DISASTER ANALYSIS AND SHELTER PLANNING OF TAIPEI CITY

Jui-Sheng Chou*

Professor, Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan

Yu-Chen Ou

Associate Professor, Department of Construction Engineering, National Taiwan University of Science and

Technology, Taiwan

Min-Yuan Cheng

Assistant Professor, Department of Construction Engineering, National Taiwan University of Science and

Technology, Taiwan

Min-Yuan Cheng

Professor, Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan

Tao-Ping Chen

Chief, Disaster Reduction and Planning Division, Taipei City Fire Department, Taiwan

Chen-Ming Lee

Graduate Research Assistant, Department of Construction Engineering, National Taiwan University of Science and

Technology, Taiwan

Chin-Hung Yeh

Graduate Research Assistant, Department of Construction Engineering, National Taiwan University of Science and

Technology, Taiwan

ABSTRACT

Taiwan is located at the earthquake belt of pan-Pacific Ocean and suffered from frequent earthquakes over the years. The earthquake-induced disasters threaten the property and life of the public all the time. Taipei City, as Taiwan's political and economic capital, is vulnerable to the earthquake potentials and is in an urgent need to evaluate the impacts caused by severe earthquake events. In the paper, Taiwan Earthquake Loss Estimation System (TELES) was employed to assess the level of building damages and emergency sheltering under various scenario seismic events. Analytical findings of this study can provide proactive-warning and decision-support information needed for managing potential earthquake-induced disasters and for planning appropriate resolution strategies in allocating shelter capacity in Taipei.

Keywords: Earthquake disaster potential analysis, Temporary shelter, Disaster Prevention Planning, TELES.

一、緒論

面對台灣所處地震頻繁的斷層帶環境,政府需 思考如何在有限的資源下,進行有效的防災規劃以 減輕天然災害所造成的損失。爰此,行政院國家科 學委員會委託國家地震工程研究中心開發一套適合 本土地理資訊且針對個人電腦平台所設計的地震災 害潛勢分析軟體 TELES (Taiwan Earthquake Loss Estimation System),全名為「臺灣地震損失評估系統」; 其前身係根據美國研發之 HAZUS (FEMA, 1997),由 國內地震學專家於民國 89 年開發完成初版「地震災 害損失評估方法與境況模擬軟體一Haz-Taiwan」。

TELES 軟體模組包含地震災害潛勢分析、一般 建築物損害評估、人員傷亡評估和一般建築物直接 經濟損失分析以及相關地震科學的經驗累積資料庫。 期間經數次大幅修正,其軟體架構與模組化設計理 念已愈趨完善。為避免與 Haz-Taiwan 名稱混淆,於 民國 92 年正式給予 TELES 的名稱(葉錦勳, 2003), 目前(2011)開放研究人員使用的最新版本為 TELES 8.5 版。

需特別說明的是,TELES 具備兩大功能:(1)於 地震發生後的短時間內,提供可能災害的分佈範圍 和規模;(2)平時可用於推估可能地震發生時的情境 與災損,藉以擬訂地區災害防救計畫。國家地震工 程研究中心(NCREE)並以集集地震驗證 TELES 模擬 結果,詳細內容可參考已出版之相關技術報告 (NCREE-02-009、NCREE-03-002、NCREE-06-015)。

對於身處地震帶的臺灣,TELES 是一項實用、 跨領域的科技研發成果,主要目的在提供標準且一 致的地震災害損失評估方法。雖然分析過程中,因 條件限制,無法避免參數的假設,但在使用者妥善 操作下,TELES 的分析結果應可作為政府防災業務 以及民間企業在評估地震災害之決策資訊。

本研究針對臨近臺北市周圍的山腳斷層及宜蘭 外海觸發的地震事件,依據內政部營建署對回歸期 475、2500年之耐震設計標準,假設地震事件造成臺 北盆地任何一區最大工址水平加速度分別為 0.24g、 0.32g、0.56g下,擬定五起不同地震參數進行情境分 析,評估臺北市各行政區建築物損壞棟數、傷亡、 以及避難人數。TELES的理論背景、分析步驟以及 選定地震事件案例將說明如後,並就分析結果進行 討論。

二、TELES 分析理論與潛勢評估 2-1 TELES 理論背景

影響地震災害程度的不確定因素眾多,包含地

震來源、地震強度、地震波傳遞方式、土壤性質、 房屋形式以及人口分佈等,均會影響地震潛勢分析 的結果,若欲分析廣大區域內的建築物受損情形, 逐戶探討個別建築物在地震下之反應,可能緩不濟 急且無法通盤考量防救災規模,適度採用統計方法 係當下較為可行的方式。TELES 分析軟體結合工程 學理以及統計的概念,將建築物分門別類,配合蒐 集歷史地震事件修正統計參數,最後提供房屋受損 以及人口傷亡的估計數量,其分析的主要流程如圖1 所示,流程圖中的分析項目與步驟將於以下子節分 別闡述。TELES 分析軟體係集合眾多專業領域的研 究成果,本篇論文僅針對結構分析理論加以說明, 其他領域的理論背景可參考其他文獻(葉錦勳,1999; 葉錦勳,2002;葉錦勳,2003;葉錦勳,2006;葉

2-2 臺北市之周圍潛勢斷層

臺灣全島估計約有 33 條活動斷層(經濟部中央 地質調查所,2011),每條斷層均會造成臺北盆地不 同程度的影響,本研究參考臺北市防災資訊網97年 度災害防救計畫第三篇地震災害(臺北市防災資訊網, 2008),選定建議主要震災模擬的宜蘭外海及山腳斷 層地震事件。此外,葉錦勳等學者(葉錦勳等,2010) 建議各地震事件模擬參數如表 1 所示。然而,後續 潛勢分析中,本研究將重新檢討相關境況模擬地震 參數的選用。

表 1、地震事件模擬參數(臺北市防災資訊網, 2008;

葉錦勳等,2010)

模擬事件	平均震源深度	斷層性質	
宜蘭外海	7公里	點震源	
山腳斷層	7.5 公里	面震源	

圖 1、TELES 分析流程圖

2-3 結構物損害分析理論

2-3-1 建築物資料庫

建築物受地震作用之反應與結構系統的質量 (Mass)、勁度(Stiffness)以及阻尼形式(Damping)有關, 換言之,若能將建築物有效分類,使得在相同地震 力作用下,同一類建築物有類似之結構反應,則可 大幅降低分析數量,進行大規模地震區域損害評估。 TELES 參考縣市政府於民國 99 年提供的房屋稅籍資料,根據建築物的材料以及樓層數目將建築物分為 15 種模型建物,其分類系統如表 2 所示。其中,依 建築物材料將模型建物分為八類,依建築物的樓層 數目則分為三個區間:1~3、4~7 樓以及 8 層樓以上, 分別可以 2 層樓、5 層樓與 12 層樓作為代表。

表 2、	建築物	分類系統
------	-----	------

毛米石	7日 今年 かかまま 少い	建築物構展制		模型建物	
俚积	建杂物材料	科 建染初接層数 —		高度(公尺)	代碼
1	木造	All	1	4.2	W1
2	鋼構造	1-3	2	7.2	S1L
3	鋼構造	4-7	5	18.0	S1M
4	鋼構造	8+	12	46.8	S1H
5	輕鋼構造	All	1	4.6	S 3

	表 2、建築物分類系統(續)						
211 米石 7 4 		建筑物建富数 _	模型建物				
但积	建采彻机杆	建杂初接眉数	層數	高度(公尺)	代碼		
6	鋼筋混凝土構造	1-3	2	6.0	C1L		
7	鋼筋混凝土構造	4-7	5	15.0	C1M		
8	鋼筋混凝土構造	8+	12	36.0	C1H		
9	預鑄混凝土構造	1-3	2	6.0	PCL		
10	加強磚造	1-3	2	6.0	RML		
11	加強磚造	4-7	5	15.0	RMM		
12	未加勁磚石造	1-2	1	2.7	URML		
13	鋼骨鋼筋混凝土構造	1-3	2	7.2	SRC1L		
14	鋼骨鋼筋混凝土構造	4-7	5	18.0	SRC1M		
15	鋼骨鋼筋混凝土構造	8+	12	46.8	SRC1H		

值得注意的是,因為不同時期房屋所使用的設計規範不同,震區的劃分也不同,此15種模型建物 根據建造年代以及所在地理位置,區分為高耐震設計(H)、中耐震設計(M)、低耐震設計(L)與未經耐震 設計(P)四個等級,如表3所示。一旦建築物的模型 建物以及耐震設計等級確立後,即可建構各類建築 物的"能耐曲線"(Capacity Curve),提供後續建築物 損害評估時使用。

表3、建築物耐震等級區分

建造年代	震區劃分	耐震設計水準
民國 62 年以前	全區	Р
民國 63 年~71 年	強震區	М
	中震區	L
	弱震區	L
民國 72 年~79 年	強震區	М
	中震區	Μ
	弱震區	L
民國 80 年~86 年	強震區	Н
	中震區	М
	弱震區	L
民國 87 年~89 年	一甲區	Н
	一乙區	Н
	一區	М
	三區	L
民國 90 年以後	一區	Н
	一區	М

2-3-2 能耐曲線(Capacity Curve)

當建築物受特定側向力作用時,由結構分析可 求得在不同側向力大小下(基底剪力 Base Shear)對應 之頂樓位移量(Δ_{roof})。根據結構動力學原理可將基底 剪力與頂樓位移量轉換成譜加速度S_a與譜位移 S_d關 係圖,即是該建築物的能耐曲線,圖 2 為標準模型 建物能耐曲線計算流程示意圖,計算的流程簡述如 下。

圖 2、建築物能耐曲線計算流程

首先將原本多自由度系統以基本振態之單自由 度系統模擬,建築物基底剪力可表示為:

$$V(t) = M_1 \cdot A_1(t) + M_2 \cdot A_2(t) + M_3 \cdot A_3(t)$$

+ \dots M_2 \cdot A_2 (t) + \dots M_3 \cdot A_3(t) (1)

其中 V(t) 為建築物受基底剪力之歷時反應; M_n 表示第 n 振態下的有效質量(Effective Mass); $A_n(t)$ 係 第 n 振 態 下 的 擬 加 速 度 歷 時 反 應 (Pseudo-Acceleration)。理論上所有振態反應對基底 剪力均有貢獻,然而對具有平面以及立面規則的低 矮建築物而言,總樓高不超過 50 公尺,第一項(i.e., $M_1 \cdot A_1(t)$)通常會超過總值的 90%,因此其他高振 態的效應幾可忽略。若假設基本振態之震動週期為 T_1 , 可得對 T 之擬加速度反應譜(Pseudo-Acceleration Spectrum),將 $A_n(t)$ 以譜加速度 S_a 取代,則式(1) 可簡化成式(2),其中 V_b 即建築物基底剪力大小。 在不同側向力大小作用下,譜加速度即可由式(2)求 得。

$$V(t) \cong M_1 \cdot A_1(t) = V_b = M_1 \cdot S_a$$
⁽²⁾

在建築物位移量維持線彈性範圍(Linear-Elastic), 其基本振態震動週期均為T₁,譜位移S_d即可由式(3) 得到。

$$S_d = \frac{T_1^2}{(2\pi)^2} \cdot S_a \tag{3}$$

當建築物水平位移進入非線性範圍,基本振態

及週期均會改變,此時必須應用其他結構動力學的 原理進一步考慮幾何及材料之非線性,期更接近結 構實際之動態反應,以求得譜加速度以及譜位移, 詳細推導過程可參考(Applied Technology Council, 1996),最終即可獲得完整的建築物能耐曲線。然而 TELES 軟體分析模型建物之能耐曲線並非由上述傳 統方式求得,其模型建物之簡化能耐曲線係由降伏 能耐($(S_a)_y$, $(S_d)_y$)以及極限能耐($(S_a)_u$, $(S_d)_u$)兩 點決定,如圖 3 所示。

圖 3、建築物之降伏能耐與極限能耐曲線圖 根據現行建築物耐震設計規範(內政部營建署, 2011),結構物受地震之最小設計基底剪力可以靜力 分析法(Equivalent Lateral Force)求得式(4)。

$$V_D = \frac{S_{aD}I}{1.4\alpha_v F_u} \cdot W \tag{4}$$

 V_D
 :最小設計基底剪力

 S_{aD}
 :工址設計水平譜加速度係數

 I
 :用途係數

 W
 :建築物全部靜載重

 α_y
 :起始降伏地震力放大倍數

 F_u
 :結構系統地震力折減係數

結合式(2)、(3)與(4),降伏譜加速度(S_a)y 與降伏 譜位移(S_d)y 可由式(5)與(6)求得。

$$(S_a)_y = \frac{V_y}{M_1} = \frac{V_y}{V_D} \frac{V_D}{\sum m} \frac{\sum m}{M_1} = \frac{C_s \gamma}{\alpha_1}$$
(5)

$$(S_d)_y = \frac{T_1^2}{(2\pi)^2} \cdot (S_a)_y$$
(6)

其中,
$$C_s = \frac{V_D}{\sum m}$$
; 設計基底剪力與建築物
總質量比
 $\gamma = \frac{V_y}{V_D}$; 降伏強度與設計強度比
(1.2 or 1.5)

M ₁		基本振態有效質量與總
$\alpha_1 = \overline{\sum m}$	•	質量比(0.62~0.8)

另外,建築物的極限譜加速度 $(S_a)_u$ 與極限譜 位移 $(S_d)_u$ 可由式(7)與(8)估算。

 $(\mathbf{S}_a)_u = \lambda \, (\mathbf{S}_a)_y \tag{7}$

 $(S_d)_u = \lambda \,\mu(S_d)_y \tag{8}$

- λ : 極限強度與降伏強度之比値(1.4)
- μ : 韌性容量,係極限位移與λ(S_d)y之
 比值(1.6~4.8)

在得到模型建物之降伏能耐((S_a)_y, (S_d)_y)以及極限能耐((S_a)_u, (S_d)_u)後,即可建立模型建物之能耐曲線,如圖3所示。雖然TELES內建各模型建物能耐曲線參數是經由簡化過程推導而得,其數値均已根據理論及西元1999年臺灣集集地震的災情資料作過校正,也與其他發生的重大地震災害作過比較與驗證,TELES依耐震等級內建各模型建物能耐曲線參數如表4所示。

耐震等級	模型建物代碼	(Sa),	$(S_a)_v$	(Sd)	(S _a).
	W1	1.220	0.400	45.00	1.300
同耐雪	S1L	1.600	0.400	30.00	1.100
	S1M	6.172	0.333	60.00	0.900
	S1H	19.685	0.254	120.00	0.800
	S3	1.600	0.400	30.00	1.100
	C1L	1.220	0.400	24.00	1.100
	C1M	2.920	0.333	48.00	0.900
	C1H	7.468	0.254	96.00	0.800
	PCL	1.220	0.400	24.00	1.000
	RML	1.220	0.400	24.00	1.050
	RMM	2.920	0.300	48.00	0.850
	URML	1.220	0.350	24.00	0.900
	SRC1L	1.600	0.400	30.00	1.100
	SRC1M	6.172	0.333	60.00	0.900
	SRC1H	19.685	0.254	120.00	0.800
中	W1	1.037	0.340	38.25	1.105
耐震	S1L	1.360	0.340	25.50	0.935
	S1M	5.246	0.283	51.00	0.765
	S1H	16.732	0.216	102.00	0.680
	S 3	1.360	0.340	25.50	0.935
	C1L	1.037	0.340	20.40	0.935
	C1M	2.482	0.283	40.80	0.765
	C1H	6.348	0.216	81.60	0.680
	PCL	1.037	0.340	20.40	0.850
	RML	1.037	0.340	20.40	0.893
	RMM	2.482	0.255	40.80	0.723

表 4、耐震設計水準模型建物能耐曲線參數

誉	建	管	理	季	刊
---	---	---	---	---	---

耐震等級	模型建物代碼	$(S_d)_y$	$(S_a)_y$	$(S_d)_u$	$(S_a)_u$
中	URML	1.037	0.298	20.40	0.765
耐震	SRC1L	1.360	0.340	25.50	0.935
	SRC1M	5.246	0.283	51.00	0.765
	SRC1H	16.732	0.216	102.00	0.680
低	W1	0.854	0.280	31.50	0.910
耐震	S1L	1.120	0.280	21.00	0.770
	S1M	4.320	0.233	42.00	0.630
	S1H	13.780	0.178	84.00	0.560
	S 3	1.120	0.280	21.00	0.770
	C1L	0.854	0.280	16.80	0.770
	C1M	2.044	0.233	33.60	0.630
	C1H	5.228	0.178	67.20	0.560
	PCL	0.854	0.280	16.80	0.700
	RML	0.854	0.280	16.80	0.735
	RMM	2.044	0.210	33.60	0.595
	URML	0.854	0.245	16.80	0.630
	SRC1L	1.120	0.280	21.00	0.770
	SRC1M	4.320	0.233	42.00	0.630
	SRC1H	13.780	0.178	84.00	0.560
未	W1	0.732	0.240	27.00	0.780
耐	S1L	0.960	0.240	18.00	0.660
莀	S1M	3.703	0.200	36.00	0.540
	S1H	11.811	0.152	72.00	0.480
	S3	0.960	0.240	18.00	0.660
	C1L	0.732	0.240	14.40	0.660
	C1M	1.752	0.200	28.80	0.540
	C1H	4.481	0.152	57.60	0.480
	PCL	0.732	0.240	14.40	0.600
	RML	0.732	0.240	14.40	0.630
	RMM	1.752	0.180	28.80	0.510
	URML	0.732	0.210	14.40	0.540
	SRC1L	0.960	0.240	18.00	0.660
	SRC1M	3.703	0.200	36.00	0.540
	SRC1H	11.811	0.152	72.00	0.480

2-3-3 耐震需求曲線(Seismic Demand Curve)

單自由度系統在某一地震力作用下(圖 4(a)),假 設質量系統(m)反應為線彈性且設定合理之阻尼比 (Damping Ratio, ξ_E),該系統之最大水平位移量(譜位 移, S_d)可由結構動力分析理論求得(Chopra A.K., 2007)。改變系統週期(T)並重複分析步驟,再由式(3) 將譜位移轉換成譜加速度(S_a),則可得到在該地震力 作用下,系統週期對應系統譜加速度之關係圖(圖 4(b)),此即該單自由度系統在外力作用下的線彈性 反應下之反應譜(Response Spectrum)。

不同的地震力作用會得到不同線彈性反應譜, 各地區的設計反應譜通常是根據觀測站收集歷史地 震力資料以及統計原理,將反應譜簡化成兩個區段, 由 (S_a)_{T=0.3} 及 (S_a)_{T=1.0} 來決定。由於不同地區有 不同地層土壤形式以及地震波傳遞路徑,在設計上 必須考量場址效應,因此簡化之線彈性反應譜還需 分別以反應譜等加速度段之工址放大係數(F_a)及反 應譜等速度段之工址放大係數(F_v)來修正,如圖 4(c) 所示。

值得注意的是,TELES 並非使用設計反應譜, 而是根據特定地震事件配合地震波衰減理論場址效 應(F_a, F_v)以及模型建物預設阻尼比值(ξ_E)(表 5)來 決定簡化反應譜值,將其轉換到譜加速度對應譜位 移關係,此關係圖則稱為該地震力作用下單自由度 系統之耐震需求曲線(圖 5)。套疊單自由度系統之能 耐曲線以及耐震需求曲線的交點,亦即功能點 (performance point)為結構物在某地震力下所產生之 最大水平位移量,以符號 D 表示。需注意的是,上 述僅適用於單自由度系統維持線彈性反應,即二曲 線之交點(系統最大位移)必須落在彈性區間內。

(c)設計反應譜

(a)單自由度系統

圖 4、單自由度系統線彈性反應譜

表)、

模型建物代碼	高耐震 H	中耐震 M	低耐震 L	未經耐震 P
W1	0.15	0.15	0.15	0.15
S1L	0.05	0.05	0.05	0.05
S1M	0.05	0.05	0.05	0.05
S1H	0.05	0.05	0.05	0.05
S 3	0.07	0.07	0.07	0.07
C1L	0.07	0.07	0.07	0.07
C1M	0.07	0.07	0.07	0.07
C1H	0.07	0.07	0.07	0.07
PCL	0.07	0.07	0.07	0.07
RML	0.10	0.10	0.10	0.10

表 5、模型建物預設彈性阻尼比值(ξ_F)(續)

模型建物代碼	高耐震 H	中耐震 M	低耐震 L	未經耐震 P	
RMM	0.10	0.10	0.10	0.10	
URML	0.10	0.10	0.10	0.10	
SRC1L	0.05	0.05	0.05	0.05	
SRC1M	0.05	0.05	0.05	0.05	
SRC1H	0.05	0.05	0.05	0.05	

圖 5、結構物最大水平位移量(線彈性區間內)

當結構構件受地震作用產生變形,因材料降伏 或其它因素而呈非線性反應時,在往復運動下會有 遲滯效應(圖 6)。遲滯迴圈所包圍的面積代表構件消 散的能量,其效應有如一般線性系統的阻尼,稱為 遲滯阻尼,將降低結構系統的反應。為簡化分析模 式,遲滯阻尼(ξ_H)係以式(9)估算

$$\xi_H = \kappa \left(\frac{\mathbf{A}_H}{2\pi \mathbf{D}' \mathbf{A}} \right) \tag{9}$$

其中D[′]表示非線性單自由度系統之功能點 (performance point)的最大位移量,A為系統擬加速度 値,A_H表示非彈性行為產生遲滯迴圈之面積,κ為模 型建物遲滯阻尼折減係數。

圖 6、結構物最大水平位移量(非線彈性)

由於在地震作用下,建築物的強度和勁度有逐 漸退化現象,遲滯阻尼所消散的能量漸減,故式(9) 括號前乘以係數ĸ,以反應在不同地震延時下結構系 統消耗能力的退化。ĸ除與地震延時以及地震規模有 關外,也與模型建物和耐震設計水準有關。地震延 時越短或耐震設計水準越高,結構系統退化的現象 愈不顯著,此時 κ 愈大。表6顯示對應不同地震延時、 模型建物和耐震設計水準的 κ 値,當地震芮式規模小 於或等於5時 $\kappa = \kappa_s$,地震規模等於6時 $\kappa = \kappa_m$,地 震規模大於或等於7時 $\kappa = \kappa_l$,其他情況則以線性內 插法求得 κ 值。

等效阻尼(*ξ_{eff}*)為彈性阻尼(*ξ_E*)與遲滯阻尼(*ξ_H*) 的總合,如式(10)所示,利用式(11)與(12)可計算非彈 性譜加速度在短週期區(等譜加速度)與長週期區(等 譜速度)的折減係數,模型建物之非線彈性耐震需求 曲線即可由線彈性耐震需求曲線求得(如圖 6)。

$$\xi_{eff} = \xi_E + \xi_H \tag{10}$$

$$R_a = 2.12/(3.21 - 0.68 \ln(\xi_{eff}))$$
(11)

$$R_v = 1.65/(2.31 - 0.41 \ln(\xi_{eff}))$$
(12)

其中, \mathbf{R}_a 代表結構系統容許韌性容量, \mathbf{R}_v 為軸力折減係數。

因為非線性耐震需求曲線與建築物最大位移量 (D)有關(參考式(9)),所以在求取非線性耐震需求曲 線與能耐曲線之交點係一疊代過程。首先,需先假 設建築物最大位移量D_i['],經由表 5、式(9)與(10)求得 等效阻尼,再以式(11)與(12)取得非線彈性耐震需求 曲線。若該曲線與建築物能耐曲線交點D_{i+1}[']與假設 值相差甚遠,則必須設定新的位移量重新代入式(9)、 (10)、(11)與(12)求取新的交點。根據(Applied Technology Council, 1996)所敘述,求得新舊位移量之 間,當功能點收斂至某一定點,D_i[']與D_{i+1}[']在誤差 ±5%視為可接受範圍,並可以此假設為結構物的非 線彈性耐震需求曲線。

			表	€6、模	型建物词	屋滯阻瓦	己折减係	嬱				
模型建物	言同	耐震(H))	4	□耐震(N	(1)	伯	氐耐震(I	_)	Ē	未經耐震	₹(P)
代碼	κ_s	κ_m	κ _l	κ_s	κ _m	κ _l	κ_s	κ _m	κ _l	κ_s	κ _m	κ_l
W1	1.00	0.85	0.60	0.90	0.77	0.54	0.80	0.68	0.48	0.70	0.60	0.42
S1L	0.90	0.77	0.54	0.81	0.69	0.49	0.72	0.61	0.43	0.63	0.54	0.38
S1M	0.87	0.74	0.52	0.78	0.67	0.47	0.70	0.59	0.42	0.61	0.52	0.37
S1H	0.85	0.72	0.51	0.77	0.65	0.46	0.68	0.58	0.41	0.60	0.51	0.36
S 3	0.90	0.77	0.54	0.81	0.69	0.49	0.72	0.61	0.43	0.63	0.54	0.38
C1L	0.90	0.77	0.54	0.81	0.69	0.49	0.72	0.61	0.43	0.63	0.54	0.38
C1M	0.87	0.74	0.52	0.78	0.67	0.47	0.70	0.59	0.42	0.61	0.52	0.37
C1H	0.85	0.72	0.51	0.77	0.65	0.46	0.68	0.58	0.41	0.60	0.51	0.36
PCL	0.85	0.72	0.51	0.77	0.65	0.46	0.68	0.58	0.41	0.60	0.51	0.36
RML	0.85	0.72	0.51	0.77	0.65	0.46	0.68	0.58	0.41	0.60	0.51	0.36
RMM	0.82	0.70	0.49	0.74	0.63	0.44	0.66	0.56	0.39	0.57	0.49	0.34
URML	0.80	0.68	0.48	0.72	0.61	0.43	0.64	0.54	0.38	0.56	0.48	0.34
SRC1L	0.90	0.77	0.54	0.81	0.69	0.49	0.72	0.61	0.43	0.63	0.54	0.38
SRC1M	0.87	0.74	0.52	0.78	0.67	0.47	0.70	0.59	0.42	0.61	0.52	0.37
SRC1H	0.85	0.72	0.51	0.77	0.65	0.46	0.68	0.58	0.41	0.60	0.51	0.36

2-3-4 易損性曲線

在 TELES 中,建築物的損害程度分為五級,分 別為無損害(d₁)、輕微損害(d₂)、中度損害(d₃)、嚴重 損害(d₄)以及完全損害(d₅),其分類方式係以地震力 下建築物最大位移量來判定。如前面章節所述,建 築物最大位移量可由模型建物的能耐曲線與耐震需 求曲線交點求得。若取最大位移量為隨機變數,假 設建築物達到任一損害狀態的機率分佈為對數常態 分佈(Log-normal Distribution),建築物達到損害狀態 的機率可以數個獨立事件機率的乘積表示。其機率 密度函數(Probability Density Function, PDF)及機率 累積函數(Cumulative Distribution Function, CDF)可

分別由式(13)及(14)表示,圖7顯示兩種函數的對應關係。

$$f(X) = \frac{1}{X\sigma\sqrt{2\pi}} e^{\frac{-(\ln X - \mu)^2}{2\sigma^2}}$$
(13)

$$F(X) = \Phi(\frac{\ln X - \mu}{\sigma})$$
(14)

- X : 隨機變數
- σ :對數標準差
- μ :對數平均値

Φ

:標準常態分佈機率累積函數

(CDF of Normal Distribution)

圖 7、達到某特定損害狀況下之機率密度函數與機率累積函數

建築物超過某特定損害狀況下之機率,可由式 (14)或如圖7(b)對應縱座標得到。舉例說明:若圖7(b) 代表模型建物代碼ClL在高耐震設計水準下達到輕 微損害(d₂)之機率累積函數分佈圖形,在特定地震力 作用下,模型建物能耐曲線以及耐震需求曲線經由 疊代得到之譜位移(即頂樓最大位移量)為D,在圖 7(b)中,對應縱座標約80%,表示在此地震力作用下, 高耐震設計水準之ClL模型建物會超過輕微損害(d₂) 之機率約為80%,而不會造成輕微損害(d₂)之機率約 為20%。

若把輕微損害(d₂)、中度損害(d₃)、嚴重損害(d₄) 以及完全損害(d₅)之機率累積函數同時畫在一張圖 中,個別損害狀態下之機率即可分別求得,如圖 8 所示。該機率累積分佈圖形即定義為該模型建物之 易損性曲線。需注意的是,各模型建物之損害狀況 定義不同,比如細微裂縫在鋼筋混凝土構造建築物 中會被歸納為輕微損害(d₂),然而對鋼構造建築物而 言,則是中度損害(d₃)。TELES 內建各模型建物損害 狀況定義以及各模型建物之易損曲線參數(μ,σ),可 參考文獻(葉錦勳,2003),其預設値乃根據多次震災 經驗修正後訂定。

2-4 人員傷亡分析理論

TELES 將人員傷亡程度概分為四級:第一級(S₁) 僅需基本治療,不需住院;第二級(S₂)需較多的醫療 程序且需住院,但無生命危險;第三級(S₃)若無適當 且迅速的醫療將有立即的生命危險;第四級(S₄)則是 立即死亡。 地震引致人員傷亡的數量與傷亡程度和一般建 築物的結構系統與非結構構件的損害程度有密切關 係,也與建築物內的人口動態分佈有關。在小地震 時,人員傷亡大多起因於非結構構件的損害,如天 花板或瓷磚掉落、隔間牆倒塌等。但在大地震時, 由於結構系統損害將引致較嚴重的傷亡情況。尤其 是一般建築物在完全損害狀態下,如發生倒塌或嚴 重傾斜的現象將引致極嚴重的傷亡。

因此,在建築物發生完全損害狀態下(d₅), TELES 將發生倒塌的傷亡率與沒有發生倒塌的傷亡 率分開考慮。表 7 為不同模型建物處於完全損害狀 態下發生倒塌比率的預設值。不同模型建物在不同 損害程度的前提下,不同傷亡程度的比率係由歷史 性的震災資料推估,表8所示為TELES系統在各模 型建物損失程度下使用的傷亡率預設值。

表 7、各模型建物在完全損害狀況下(d₅)發生倒塌的 比例

模型建物代碼	倒塌率
W1	20.0
S1L	20.0
S1M	15.0
S1H	10.0
S3	25.0
C1L	20.0
C1M	15.0
C1H	10.0
RML	25.0
RMM	20.0
PCL	25.0
URML	25.0
SRC1L	20.0
SRC1M	15.0
SRC1H	10.0

担府印击	表8	、	5 致的傷匚举 6	C	C
	展型建物代啮	δ ₁	δ ₂	δ ₃	δ ₄
輕微	WI GIL	0.020	0.001	0.000	0.000
損害	SIL	0.020	0.001	0.000	0.000
程度	S1M	0.020	0.001	0.000	0.000
反	S1H	0.020	0.001	0.000	0.000
	S 3	0.020	0.001	0.000	0.000
	C1L	0.020	0.001	0.000	0.000
	C1M	0.020	0.001	0.000	0.000
	C1H	0.020	0.001	0.000	0.000
	PCL	0.020	0.001	0.000	0.000
	RML	0.020	0.001	0.000	0.000
	RMM	0.020	0.001	0.000	0.000
	URML	0.020	0.001	0.000	0.000
	SRC1L	0.020	0.001	0.000	0.000
	SRC1M	0.020	0.001	0.000	0.000
	SRC1H	0.020	0.001	0.000	0.000
中	W1	0.200	0.020	0.002	0.000
度損	S1L	0.200	0.020	0.002	0.000
害程	S1M	0.200	0.020	0.002	0.000
度	S1H	0.200	0.020	0.002	0.000
	S3	0.200	0.020	0.002	0.000
	C1L	0.200	0.020	0.002	0.000
	C1M	0.200	0.020	0.002	0.000
	C1H	0.200	0.020	0.002	0.000
	PCL	0.200	0.020	0.002	0.000
	RML	0.200	0.020	0.002	0.000
	RMM	0.200	0.020	0.002	0.000
	URML	0.400	0.040	0.002	0.000
	SRC1L	0.200	0.020	0.002	0.000
	SRC1M	0.200	0.020	0.002	0.000
	SRC1H	0.200	0.020	0.002	0.000
嚴	W1	1.000	0.500	0.100	0.010
重損	S1L	1.000	0.500	0.100	0.010
言	S1M	1.000	0.500	0.100	0.010
度	S1H	1.000	0.500	0.100	0.010

損傷程度		子候型建初損苦川5 S ₁	玖町陽L平(痕) S2	S ₃	S4
	\$3	1.000	0.500	0.100	0.010
重損	C1L	1.000	0.500	0.100	0.010
項 害 程	C1M	1.000	0.500	0.100	0.010
度	C1H	1.000	0.500	0.100	0.010
	PCL	1.000	0.500	0.100	0.010
	RML	1.000	0.500	0.100	0.010
	RMM	1.000	0.500	0.100	0.010
	URML	2.000	1.000	0.200	0.020
	SRC1L	1.000	0.500	0.100	0.010
	SRC1M	1.000	0.500	0.100	0.010
	SRC1H	1.000	0.500	0.100	0.010
完	W1	7.000	5.600	4.200	3.500
全損	S1L	7.000	5.600	4.200	3.500
害程	S1M	4.000	3.200	2.400	2.000
度但	S1H	2.000	1.600	1.200	1.000
無倒	S 3	7.000	5.600	4.200	3.500
塌	C1L	7.000	5.600	4.200	3.500
	C1M	4.000	3.200	2.400	2.000
	C1H	2.000	1.600	1.200	1.000
	PCL	7.000	5.600	4.200	3.500
	RML	7.000	5.600	4.200	3.500
	RMM	4.000	3.200	2.400	2.000
	URML	8.000	6.400	4.800	4.000
	SRC1L	7.000	5.600	4.200	3.500
	SRC1M	4.000	3.200	2.400	2.000
	SRC1H	2.000	1.600	1.200	1.000
完	W1	10.000	8.000	6.000	5.000
上損	S1L	10.000	8.000	6.000	5.000
青程	S1M	8.000	6.400	4.800	4.000
度且	S1H	6.000	4.800	3.600	3.000
倒 塌	S 3	10.000	8.000	6.000	5.000
	C1L	10.000	8.000	6.000	5.000
	C1M	8.000	6.400	4.800	4.000
	C1H	6.000	4.800	3.600	3.000

	表 8、各模型建物損害所引致的傷亡率(續)								
損傷程度	模型建物代碼	S ₁	S ₂	S ₃	S_4				
完	PCL	10.000	8.000	6.000	5.000				
全損	RML	8.000	6.400	4.800	4.000				
害程	RMM	6.000	4.800	3.600	3.000				
度日	URML	10.000	8.000	6.000	5.000				
倒撮	SRC1L	10.000	8.000	6.000	5.000				
7283	SRC1M	8.000	6.400	4.800	4.000				
	SRC1H	6.000	4.800	3.600	3.000				

人口動態分佈的資料需依不同建物的用途類別 進行統計概算。因此進行人員傷亡評估時,須將模 型建物的損害數量轉換成各用途分類的損害數量, 或將人口動態分佈資料轉換成在不同模型建物的人 口數量分佈。TELES 評估人員傷亡的模式如圖 9 所 示,模型建物內人員死亡的機率可以式(15)評估。 $P_{killed} = P_{d2}P_{k|d2} + P_{d3}P_{k|d3} + P_{d4}P_{k|d4}$

$$+ P_{d5}(P_{d51|d5}P_{k|d51}$$
(15)
+ $P_{d52|d5}P_{k|d52}$)

其中, P_{d2} 、 P_{d3} 、 P_{d4} 、 P_{d5} 代表各模型建物之各損害 程度機率; $P_{d51|d5}$ 、 $P_{d52|d5}$ 分別代表模型建物完全損 害之沒有倒塌和倒塌的機率; $P_{k|d2}$ 、 $P_{k|d3}$ 、 $P_{k|d4}$ 、 $P_{k|d51}$ 、 $P_{k|d52}$ 代表各模型建物損害所引致之不同傷亡程度的 比率。

圖 9、一般建築物損害所引致的人員傷亡評估模式示意圖

模型建物內人員傷亡數的平均值可表示為:

 $E[N_{killed}] = NP_{killed}$

其中,N是模型建物內人口數量的推估值。

上述統計資料通常係以村里為單位,各村里依 評估所得結果加總後可得研究區域的傷亡人數與程 度。人員傷亡評估結果在平時可據以研擬地區防災 計畫,規劃各地區所需醫療設備、病床數及救災資 源分佈等。尤其在大地震發生後的短時間內,讓臺 北市災害應變中心瞭解可能的災情分佈,有助於救 援人力和醫療資源的調派。

2-5 避難人數分析理論

考量災害發生時的避難選擇處所,大部分民眾 在狀況許可下會優先選擇回到自己的處所、借住親 友家或者投宿旅館。因此,搬遷民眾的數量和避難 人數的數量(即政府需要提供的短期收容能量)並不 相符。TELES 在評估程序上係先根據住宅用途建物 損害的情況決定需要搬遷民眾的數量(#P),配合其他 主客觀因素,最後得到以村里為單位之震後短期避 難收容需求(#S)(葉錦勳,2006),如式(16)與(17)所示。

$#P = #POP \times (W_M \times \%M + W_E \times \%E + W_C$	(16)
× %C)	(10)

$$\#S = \#P \cdot \sum_{i} \sum_{j} \sum_{k} \alpha_{ijk} \cdot HI_i \cdot HO_j \cdot HA_k$$
(17)

#P :震後搬遷民眾數量;

#POP : 各村里統計總人數;

- $W_M imes W_E imes W_C$: 分別表示住宅用途建物在中度、 嚴重及完全損害狀態下的住戶搬 遷比例;
- %M、%E、%C :分別表示住宅用途建物 在中度、 嚴重以及完全損害狀態下的比 率;
 - #S :震後短期避難收容需求;
 - HI_i
 :各村里戶數中,家庭可支配所得

 屬於第 i 等級的戶數比率;

- HOj
 :各村里戶數中,住宅屬於自有或

 租用的比率;

 HAk
 :各村里人口中,年齡在第 k 分類
 - 中的比率。

在式 17 中,α_{ijk}表示家庭收入、住宅自有率與 年齡在避難需求推估上之權重:

$$\alpha_{ijk} = I_i \cdot om_j \cdot am_k \tag{18}$$

*l_i*表示不同家庭所得之修正係數, *om_j*表示房屋 自有率修正係數, *am_k*則表示不同年齡的修正係數, 如表 9 所示,表中的數值反映家庭所得偏低、房屋 租用以及年齡層偏大或過小的族群,尋求政府提供 避難空間的需求相對較高。

表9	•	震後短期避難收容數量相關修正係數	Ø
151		辰仪应为迎起12日数里101911911小麦)

類別		描述	TELES 預設値
家庭可支配所得	I_1	各地區家庭可支配所得前 20%低	0.9
	I_2	各地區家庭可支配所得前 20%-40%低	0.8
	I_3	各地區家庭可支配所得前 40%-60%低	0.6
	I_4	各地區家庭可支配所得前 60%-80%低	0.3
	I_5	各地區家庭可支配所得前 20%高	0.05
房屋自有率	om_1	房屋爲自有	0.7
	om_2	房屋爲租用	1
年齡	am_1	年齡小於16歲	1
	am_2	年齡介於 16-65 歲之間	0.7
	am_3	年齡大於 65 歲	1

三、地震事件境況模擬

3-1 地震事件選定

在 TELES 分析中需先設定相關的地震參數,針 對山腳斷層地震事件而言,本研究係參考葉錦勳等 學者提供的資料(葉錦勳等,2010)。而宜蘭外海地震 斷層因缺乏文獻資料,本研究係採試誤法並諮詢專 家學者建議,假設宜蘭外海地震事件為線震源,得 到在相同芮氏規模下,造成臺北地區損害最嚴重 (d₄ + d₅)的斷層開裂方向為 150 度(表 10),此角度代 表斷層的延伸方向通過臺北市中心,與常理判斷相 符。

表 10、宜蘭外海—斷層開裂方向對臺北市之影響

-		· · · · · · · ·					
斷層開裂方向(度)	0	30	60	90	120	150	180
臺北市嚴重損害棟數	311 棟	33 棟	4棟	29 棟	289 棟	746 棟	329 棟

表 10、 宜蘭外海	-斷層開裂方向對臺北市之影響(續)
------------	-------------------

			121 11				
斷層開裂方向(度)	0	30	60	90	120	150	180
臺北市總傷亡人數(日間)	100 人	10 人	2人	9人	92 人	256 人	106人

*芮氏規模 M=7.2,回歸期 475 年,PGA=0.24g。

本文計模擬五起地震事件。其中,事件一與事件二分別代表宜蘭外海、山腳斷層地震事件,並調整參數使二起地震事件造成臺北盆地任一區域最大地表加速度達回歸期475年之耐震設計標準(內政部營建署,2011),即工址水平加速度0.24g;事件三及事件四(宜蘭外海及山腳斷層)造成臺北盆地任何一區最大地表加速度達回歸期2500年之耐震設計標準(內政部營建署,2011),即工址水平加速度0.32g。

此外,有鑑於日本311 地震事件的經驗,本研究以山 腳斷層南段12公里全部破裂為例,增加事件五以進 一步提升地震災害等級,評估臺北市在最大地表加 速度達 0.56g 時之建物受損程度與臨時避難收容能 量。依當代文獻研析與專家學者之建議,表11 總結 前述各地震事件所使用模擬參數值(臺北市防災資訊 網,2008;葉錦勳等,2010;周瑞生,2011;經濟部 中央地質調查所,2011)。

表 11、 地震 事件 植 擬 參 動	
---------------------	--

地震事件	規模	PGA	開裂方向	開裂傾角	震源深度	斷層性質	破裂長度/
							斷層長度(km)
宜蘭外海 (事件一)	7.2	0.26	150°	90°	7 公里	線震源	74.6/無參考數據
山腳斷層(事件二)	5.2	0.28	30°	62°	7.5 公里	面震源	0.99/34
宜蘭外海 (事件三)	7.3	0.36	150°	90°	7 公里	線震源	91.0/無參考數據
山腳斷層(事件四)	5.5	0.35	30°	62°	7.5 公里	面震源	1.9/34
山腳斷層(事件五)	6.3	0.56	30°	62°	7.5 公里	面震源	11.76/34

3-2 TELES 分析步驟

本節以山腳斷層為例,依序說明如何進行 TELES震災境況模擬,操作流程主要分為四個步驟: (1)新增地震模擬事件、(2)鍵入基本參數資料、(3)設 定分析範圍以及(4)匯出事件分析結果。

3-2-1 新增地震模擬事件

在設定地震事件時,TELES 會根據使用者輸入 的地震參數及匯入資料進行震災境況模擬。圖 10 為 TELES 使用者操作視窗,選定新增地震模擬事件 (Define New)開始一個新的地震災害潛勢分析個 案。

圖 10、TELES 操作視窗

首先輸入計畫名稱、檔案儲存位置以及其他有 關日後辨識檔案內容的資訊。接著,在地震類型的 下拉式選單內,依地震類型可選擇"依歷史性地震 的震源參數"、"依已知的活動斷層位置與屬性資 料"與"任意指定的斷層位置、規模與斷層開裂方向" (圖 11),由於山腳斷層已被歸類為臺灣的活動斷層之 一,因此選擇"依已知的活動斷層位置與屬性資 料",並在之後的斷層名稱下拉式選單中,選定資 料庫內建之"山腳斷層",此時系統自動產生斷層 的震央經度與震央緯度數值,如圖 12 所示。

the second s					
ingon lines and	88 (a)	11212	DARK B	1818	- in
MATCH LATER	ALL BROWSER	8704	Characterization Last	Contract of the Res	and in the local
BARRY LAW BOALDER		8192	14080-110		
NAME OF TAXABLE PARTY.	-	1000	Incompany.	に言い意いまい	-
sands preside the lot	D D	Revice	Aug. (2007)	3	
NEWS PARTY AND	THE REAL PROPERTY OF	1000			(T.)
manager of the tar	etg [3] [3] [3]	10.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 11 11	
40.000	RADE CLE	20.000	-	BARR .	C1.86
Road In to	RABE 20		10 Aug	RABE	21.00
#24#	3 411	##1/#		0.5	are
			1.468	1 4	_
20 80-00	11088	7.0	0.00	57	
#A * #	C 898	104	00.00	- V I	
AM 104 PMR	C 200		1000		
88 1 AM 1 MM			STREEN.		
		-			

圖 11、輸入地震規模與斷層名稱

圖 12、確認斷層經緯度位置

3-2-2 鍵入地震事件參數

利用表 11 提供的山腳斷層參數(事件二)為例, 輸入地震規模與震源深度,如圖 13 所示。斷層破裂 長度及斷層破裂寬度初始值係由 TELES 內部公式自 動取得,但必須作適當的修正。其目的在延伸斷層 破裂面由地表至斷層最大破裂深度,且使震源深度 為地表至破裂面形心位置的距離,如圖14所示。以 事件二為例,斷層寬度可由 2 倍的震源深度除以正 弦 62 度(sin62°)獲得,約為 17 公里。

圖 13、輸入芮氏規模與震源深度

圖 14、面斷層各參數示意圖

121100000

空間分析面地

圖 15、TELES 評估項目

-2-0 Rd 818

#與操實院員先評估之PG-4的門機值

超次线 深東線之 船站经接张师

通常成绩失評估之时-A的門着信

10

建厚带接着或插头评估之PSA的門機值 種資源實證過來詳估之Hund的問題值 II 编译表或编杂評估之PG-4的門着值 管接接着成果先开放之时4的門着值 [10元]。

3-2-3 設定分析範圍

如圖 15 所示,在進行災損評估時,要獲得表格 內次層災損評估結果,必須先完成表格內上層的災 損評估分析。例如若要得到某一地震事件下建築物 損害所引起的人員傷亡數量,則必須先勾選上層 "一般建築物之損害暨損失評估"中之"結構系 統",使系統先行評估建築物損壞數量,才可藉由 評估結果推算可能的"人員傷亡數量"。然而建築 物的損壞是由於地表運動或地層破裂釋放能量導致, 因此必須先進行"地震災害潛勢分析"。

待使用者勾選欲評估的項目後, TELES 為節省 運算時間,可從圖 16 之視窗,調整各項評估的預設 門檻值。例如視窗中的"建築物損害或損失評估之 PGA 門檻值"欄位預設值為 0.08g (PGA: Peak Ground Acceleration,最大地表加速度),表示系統在進 行一般建築物之災損評估時,只有在最大地表加速 度大於 0.08g 的地區才進行評估,小於該門檻值的地 區則略過不作分析。後面幾項依序係針對橋樑、道 路設施等進行評估時之預設門檻值,在此不做任何 調整。之後,點選"完成",TELES 即開始進行各 項震損評估。

3-2-4 匯出事件分析結果

完成境況模擬之後,即可由"Results"選單中查 詢模擬結果,在此僅提供 PGA 指數分佈圖做說明。 如下圖 17 所示,在選取 "Results" → "PESH",即 可獲得每一地區最大地表加速度值。其他各項分析 結果,如房屋損害棟數以及避難人數等,可以類似 操作方式取得。

601-1A	5212-		38.1
frant same	fat.s.	794	
119-31	129-2	0.1229	
*	***	4.1218	
1.04.00	1.048	6 [268]	
101	Max.	4 1281	
2 14 2	202	0.1247	
1.4.1	0.02	0.1217	
171	875	4.1239	
182	I RAS	0.1006	
14.1.E	14.2.2	0.1004	
# 4 E	*42	8.1294	
12/12	12H E	41018	
# (5 E	*.0.8	0.1264	
# 22 11	***	4.1008	
+98	+98	4.1082	
_	_		 1.000

圖 16、TELES 分析範圍之門檻值 圖 17、各村里地震災害潛勢分析結果

四、分析結果

本研究分析之五起地震事件依引致臺北盆地最 大地表加速度的程度可區分為三個群組,第一個群 組包含宜蘭外海地震事件一與山腳斷層地震事件二, 第二群組包含宜蘭外海地震事件三與山腳斷層地震 事件四,最後一個群組係考量臺北市遭受類似日本 311 地震引致之最大地表加速度,為山腳斷層地震事 件五。以上分析結果將以臺北市各行政區內房屋, 針對建築物嚴重(d₄)與完全損害狀態(d₅)加總的建築 物棟數以及避難人數呈現,分別說明於後。

4-1 第一群組地震事件

針對宜蘭外海地震事件一及山腳斷層地震事件

二,其地震規模造成臺北盆地最大地表加速度達 0.24g 時,各行政區房屋潛在損害棟數如表 12 與圖 18(a)所示;避難人數如表 13 以及圖 18(b)所示。 就房屋嚴重損害數量(d₄ + d₅)而言,由於宜蘭外海斷 層方向為 150 度通過臺北市中心,地震事件一的分 析結果顯示中山區、大同區以及萬華區為災情較嚴 重的區域,研判與區域內老舊社區偏多有關。而山 腳斷層位於臺北盆地西北方,在地理位置上近士林 區與北投區,造成兩區域內房屋損害數量較高。而 中正區、大同區以及萬華區在山腳斷層地震事件二 的作用下,房屋損害數量是相對嚴重,仍與區域內 老舊社區偏多相關。

	衣12、舟一枡枪	1—谷皿厉崖頂古侬數		
行动可提	宜蘭外海	山腳斷層	不均均字神事	
1] 以區場	(事件一)	(事件二)	平均損苦休數	
松山區	57	3	30	
信義區	39	1	20	
大安區	70	6	38	
中山區	142	9	76	
中正區	39	10	25	
大同區	100	17	59	
萬華區	107	17	62	
文山區	63	0	32	
南港區	23	0	12	
內湖區	54	0	27	
士林區	41	15	28	
北投區	11	11	11	
臺北市總損害棟數	746	89	418	

夕正戶戶出雲插動

觀察避難人數分析結果可以發現,避難人數與 房屋損害棟數有正相關,但是在同一地震事件下, 最多房屋損害棟數的區域不一定造成最多避難人數。 舉例說明,大安區在事件一與事件二的房屋損害棟 數分別為 72 棟與 6 棟,與其他區域作比較大概位於 中等災損,然而在避難人數上卻分別為 744 與 179 人,即在事件一內是所有區域中最高,在事件二內 僅次於萬華區,主要原因在於住宅人口的密度較 高。

TELES 在作避難人數分析時係根據住宅用途建

築物的損壞情況,換句話說,住宅用途建築物數量 較高的行政區預期將有較多的避難人數。當然還有 其他影響避難人數的因素,例如家庭收入、種族、 住宅自有率與年齡等。絕大多數居民在災後會選擇 回到自己住處或者親戚朋友家,TELES 在分析時均 有作適當的參數修正以考量眾多因素。

觀察平均避難人數可知大安區、中山區、萬華 區以及文山區為此群組地震事件下避難人數偏多的 區域,在規劃臨時避難空間以及救援物資動線規劃 上必須特別考量。

表 13、第一群組一各區避難人數						
行动可制	宜蘭外海	山腳斷層	不均应批人事件			
1〕以堲戏	(事件一)	(事件二)	丁七四世来世八天秋			
松山區	448	84	266			
信義區	438	51	245			
大安區	744	179	462			
中山區	514	123	319			
中正區	299	124	212			
大同區	329	151	240			
萬華區	479	205	342			
文山區	614	37	326			
南港區	193	10	102			
內湖區	408	22	215			
士林區	253	176	215			
北投區	165	157	161			
臺北市總避難人數	4,884	1,319	3,102			

0 100 200 300 400 500 **平均遊弊人款**

(b)平均避難人數

(a)平均房屋損害棟數

圖 18、第一群組

4-2 第二群組地震事件

表 14 與圖 19(a)為宜蘭外海地震事件三以及山 腳斷層地震事件四在地震規模造成臺北盆地最大工 址水平加速度約0.32g引致各行政區房屋損害棟數。 避難人數如表 12 所示,災情的分佈結果與第一群組 地震事件類似,然造成的損害較大。

	表 14、第二群組	-各區房屋損害棟數		
行政可试	宜蘭外海	山腳斷層	不均指字插動	
门以回坞	(事件三)	(事件四)	十均頂古休奴	
松山區	164	8	86	
信義區	144	4	74	
大安區	237	16	127	
中山區	304	23	164	
中正區	146	23	85	
大同區	231	39	135	
萬華區	213	39	126	

表 14、第二群組一各區房屋損害棟數(續)						
行政可提	宜蘭外海	山腳斷層	不朽铝字植動			
门政삩域	(事件三)	(事件四)	十均負合休奴			
文山區	219	4	112			
南港區	80	0	40			
內湖區	136	2	69			
士林區	159	37	98			
北投區	48	26	37			
臺北市總損害棟數	2,081	221	1,151			
	表 15、第二群組	一各區避難人數				
行政可提	宜蘭外海	山腳斷層	平均			
1〕以回现	(事件三)	(事件四)	避難人數			
松山區	1,075	163	619			
信義區	1,097	116	607			
大安區	1,756	323	1,040			
中山區	1,048	223	636			
中正區	774	225	500			
大同區	731	272	502			
萬華區	978	374	676			
文山區	1,542	108	825			
南港區	470	31	251			
內湖區	883	66	475			
士林區	689	325	507			
北投區	400	284	342			
臺北市總避難人數	11,443	2,510	6,977			

圖 19、第二群組

4-3 第三群組地震事件

針對山腳斷層地震事件五,其地震規模造成臺

北盆地最大工址水平加速度達約 0.56g 的各行政區 房屋損害棟數如表 16 與圖 20(a)所示,避難人數如表

16 以及圖 20(b)所示。

	我 10 初二研組 百世历座顶百怀数六起;	朱正ノへ安久			
行政可试	山腳斷層(事件五)				
1〕 以 四	房屋損害棟數	避難人數			
松山區	82	803			
信義區	48	553			
大安區	139	1,336			
中山區	284	1,177			
中正區	175	942			
大同區	369	1,224			
萬華區	363	1,616			
文山區	45	542			
南港區	15	171			
內湖區	51	497			
士林區	538	2,080			
北投區	499	2,217			
言小士	總損害棟數	總避難人數			
「二小」「「二」「二」「二」「二」「二」「二」「二」「二」「二」「二」「二」「二」「二	2,608	13,158			

表 16、第三群組一各區房屋損害棟數與避難人數

五、避難空間規劃

欲降低地震災害對居民生命財產的衝擊,平時 即規劃適當之避難空間是刻不容緩的因應對策。避 難空間根據避難人員停留的時間長短以及對應災害 發生之時序,可以區分為「緊急避難場所」、「臨時 避難場所」、「臨時收容場所」以及「中長期收容場 所」(何明錦、李威儀,2000)。針對「臨時避難收容 場所」,研究團隊在民國 100 年期間實地踏勘臺北市 12 個行政區內規劃的 25 所指定避難收容學校,並以 問卷調查與訪談方式進行資料蒐集的工作,主要目的在協助政府相關單位評估及更新避難場所的資訊 (周瑞生,2011)。

根據訪談與調查結果,臺北市行政區內避難學 校的收容人數彙整如表 17 所示。其中,收容面積乃 根據實地踏勘後的判斷。若該學校提供的避難空間 為一開放空間且沒有特殊障礙物,經實地丈量與避 難空間建築物使用執照面積類似,該避難空間則以 建築物使用執照所登載的面積為主。若學校避難空 間曾經更改配置或者目前有堆放物品,則該避難空 間以實地丈量的資料為主。陳列的25所避難學校總 安置面積約29,794m²,利用921地震組合屋的經驗 公式,假設每一人所需使用的避難空間最少為4平 方公尺,得總收容人數約7,448人,其中大同區、萬 華區與中山區可收容人數偏低,均不及300人,必 需規劃或新增適當的收容空間。

若將實地踏勘結果與第一群組地震事件 TELES 模擬分析的平均結果進行比較,各行政區所需的避 難人數與實際踏勘所得各避難學校收容人數收錄於 表 18 並繪製如圖 21 所示。表中顯示當避難人數除 以收容人數的比例大於 1 時代表收容能量不足。反 之,若數值小於1時表示收容能量足夠。由表18可 發現第一群組(回歸期475年耐震設計標準)潛在收容 能量不足的行政區包含萬華區與中山區,尤其萬華 區的收容能量未達需求避難人數之八成,而大同區 之收容能量亦已飽和;第二群組(回歸期2500年耐震 設計標準)潛在收容能量不足的行政區增加大安區、 中正區與士林區;第三群組潛在收容能量的符合行 政區僅剩信義區、文山區、南港區與內湖區。

由分析結果顯示,政府單位應針對上述收容能 量不足之行政區增設具臨時避難空間或規劃指定其 他學校收容面積以利後續災害應變作業^{註1}。

					UH I
行政區	學校名稱	收容場所	收容面積(m²)	收容面積來源	收容人數(人)
松山區	民權國小	活動中心	1,432	使用執照	358
	三民國小	活動中心	1,083	使用執照	271
全	松山區	約8言十	2,515	總計	629
信義區	興雅國中	全校教室	5,086	實際丈量	1,272
	博愛國小	活動中心	804	實際丈量	201
全	信義區	總計	5,890	總計	1,473
大安區	龍門國中	體育館	1,297	實際丈量	324
	幸安國小	活動中心	1,222	使用執照	306
全	大安區	約8言十	2,519	總計	630
中山區	五常國中	活動中心	833	實際丈量	208
	新興國中	會議室	296	實際丈量	74
全	中山區	總計	1,129	總計	282
中正區	弘道國中	教室一間	127	實際丈量	32
	成功高中	體育館	1,768	使用執照	442
全	中正區	約8言十	1,895	總計	474
大同區	忠孝國中	活動中心	420	校方提供	105
	建成國中	活動中心	521	實際丈量	130
全	大同區	總計	941	總計	235
內湖區	麗湖國小	活動中心	791	實際丈量	198
	大湖國小	操場、球場	4,333	實際丈量	1,083
	康寧國小	活動中心	980	使用執照	245
全	內湖區	總計	6,104	總計	1,526

表 17、臺北市指定學校之臨時收容場所面積與收容人數統計

^{港1}臺北市政府於民國 101 年業依建議將臨時收容場所由 25 所擴增至 55 所,請參考<臺北市防災資訊網>。

	表	17、臺北市指定	學校之臨時收容	場所面積與山	收容人數統計	(續)	
行政區	學校名稱	收容場所	收容面積(m²)	收容面	積來源	責來源 收容人數(人)	
	景興國中	活動中心	1,376	使用	執照	344	4
又山區 景興國小		幼稚園	1,960	使用執照		490	
全文	て山區	總計	3,336	絶	計	834	
±./#·IF	修德國小	教室三間	167	實際丈量		42	
肖花區	成德國小	活動中心	1,243	使用	執照	31	1
全南	 雨港區	總計	1,410	約	計	35.	3
黄葉山	新和國小	活動中心	470	使用	執照	11′	7
禹華匝	萬華國中	活動中心	623	實際	丈量	15	6
全連	「華區	總計	1,093	約	計	273	3
⊥.₽₽	福林國小	活動中心	603	實際	丈量	15	1
工作单	士林國小	活動中心	844	實際	丈量	211	
全士	一林區	總計	1,447	絶	計	362	2
	新民國中	活動中心	710	實際丈量		176	
北按區	逸仙國小	活動中心	805	實際丈量		201	
全;	全北投區 約		1,515	總計		37	7
	合計		29,794	合	≓ +	7,44	18
		表 18	、避難人數與收	容人數比較			
行政區	次∽↓勘(<i>د</i> ۲	避難人數(人)		避糞	准人數/收容/	人數
日政區		第一群組	第二群組	第三群組	第一群組	第二群組	第三群組
松山區	629	266	619	803	0.42	0.98	1.28
信義區	1,473	245	607	553	0.17	0.41	0.38
大安區	630	462	1,040	1,336	0.73	1.65	2.12
中山區	282	319	636	1,177	1.13	2.26	4.17
中正區	474	212	500	942	0.45	1.05	1.99
大同區	235	240	502	1,224	1.02	2.14	5.21
萬華區	273	342	676	1,616	1.25	2.48	5.92
文山區	834	326	825	542	0.39	0.99	0.65
南港區	353	102	251	171	0.29	0.71	0.48
內湖區	1,526	215	475	497	0.14	0.31	0.33
士林區	362	215	507	2,080	0.59	1.40	5.75
北投區	377	161	342	2,217	0.43	0.91	5.88
合計	7,448	3,105	6,980	13,158			

各行政區避難與收容人數比較圖

六、結論與建議

- (1) 本研究利用 TELES 地震潛勢分析軟體擬定五起 地震事件作爲臺北市地震災害潛勢分析的研究案 例,分析前必須謹慎設定 TELES 內各項地震參數。 使用不同地震參數會導致分析結果的歧異,因此 在參數的選用應依循當代科學的合理依據。各行 政區總房屋損害棟數分析結果與斷層地理位置具 高度相關: 官蘭外海斷層若為 150 度方向通過臺 北市中心,其引致之地震造成大安區、中山區、 大同區、萬華區以及文山區的房屋損害數目較為 嚴重(事件三);而山腳斷層位於臺北盆地西北方, 造成北投區與士林區房屋損壞嚴重(事件五),研 判區域內老舊社區偏多及建築耐震能力較差係主 要原因。
- (2) 房屋損害嚴重與避難人數具相關性,但並非呈正 比例關係,主要原因在於各行政區內住宅人口密 度不同。根據第一群組地震事件與第二群組地震 事件的分析平均結果顯示, 文山區、萬華區、中 山區與大安區內避難人數需求較多;而第三群組 地震事件則反映北投與士林兩區避難需求激增。
- (3) 利用 TELES 在第一群組地震事件下的平均分析 結果與臺北市目前規劃的避難空間進行比較,發

現收容能量不足的行政區包含萬華區與中山區, 尤其是萬華區的收容能量不及需求避難人數之八 成,而大同區之收容能量亦達飽和;面對第二群 組潛在收容能量不足的行政區則多了大安區、中 正區與士林區;第三群組潛在收容能量的符合行 政區僅剩信義區、文山區、南港區與內湖區。分 析的結果顯示,前述不足額之行政區應增設適當 避難空間或增選其他學校以利就災應變作業規 割。

- (4) TELES 係綜合眾多研究學理,以統計分析的觀點, 累積歷史地震事件修正內部計算的參數。目前 TELES 版本的分析結果主要係經 921 集集地震的 資料作修正,在未來模擬震災方面的準確性、可 靠性與地震境況,尙有持續改善的空間。
- (5) TELES 結構分析中的基本原理,在使用限制上可 歸納如下: TELES 主要係利用模型建物作建築物 損壞機率的分析,在現實生活中,即便樓層高度、 材料以及建造年代相同的建築物,仍存在其他因 素會導致建築物有不同的耐震反應。從統計觀點, 要得到可靠的分析結果必須累積足夠的樣本事件, 目前 TELES 的發展雖尙屬起步階段,得到的分析 結果仍具有相當程度的參考價值,但應用在災害

應變規劃避難道路或避難空間時,仍需考量實際 狀況做適當修正。

- (6) TELES 利用靜力分析法的設計原理得到模型建物耐震需求曲線,其適用建築物必須以基本振態的反應為主,亦即樓高不得超過50公尺,且平面配置必須為規則型式,然而針對臺北市目前新式標的建築物,如臺北101大樓即不在分析考量範圍內。另外,由於TELES 係根據稅籍資料作為建築物的分類依據,政府公部門或學校等基礎設施沒有納入稅籍資料庫的機構並不包含在目前TELES 版本的分析範圍內。
- (7)本文主要呈現臺北市各行政區房屋損害棟數與避 難人數的分析結果,並比較潛在避難人數與現行 之避難收容能量。未來研究可針對避難路線最佳 化、傷亡人數、火災發生與廢棄物處理量、橋梁 設施、地下管線與道路等進行相關境況分析並研 擬具體因應對策。

七、誌謝

本研究承蒙臺北市政府消防局委託研究案「臺北 市災害防救深耕計畫」,以及行政院國家科學委員會 多年期整合型研究計畫「極端氣候下都市複合性災 害潛勢評估與防災作業之研究-以臺北市爲例」於研 究執行期間的支持與協助,特此致謝。

八、參考文獻

- Applied Technology Council, 1996, "Seismic Evaluation and Retrofit of Concrete Buildings," Concrete Buildings, Vol. 1, Report No. SSC 96-01, Redwood City, CA, U.S.A.
- 2. Chopra A. K., 2007, Dynamics of Structures, 3rd Ed. Prentice Hall N. J., U.S.A.
- FEMA, 1997, Earthquake Loss Estimation Methodology- HAZUS97, Technical Manual.

- 4. 內政部營建署, 2011, 建築物耐震設計規範。
- > 臺北市防災資訊網,2008,臺北市防災資訊網97 年度災害防救計畫"from http://tdprc2.tfd.gov.tw/TaipeiCityEms1_public/org 2.html."
- 何明錦、李威儀,2000,都市計畫防災規劃手冊 彙編,內政部建築研究所。
- 周瑞生,2011,臺北市災害防救深耕計畫(第2期) 總結報告,臺北市政府消防局,國立臺灣科技大 學生態與防災工程研究中心。
- 8. 經濟部中央地質調查所, 2011, http://fault.moeacgs.gov.tw/TaiwanFaults/Default.a spx。
- 葉錦勳,1999,地理資訊系統在地震災害潛勢分 析的損失評估之應用,國家地震工程研究中心, 臺北市。
- 10.葉錦勳,2002,地震災害境況模擬方法與應用軟 體整合研究,國家地震工程研究中心,臺北市。
- 11.葉錦勳,2003,臺灣地震損失評估系統—TELES, 國家地震工程研究中心,臺北市。
- 12.葉錦勳,2006,地震危害度分析與震災境況模擬 技術整合研究(I),國家地震工程研究中心,臺北 市。
- 13.葉錦勳,2006,地震危害度分析與震災境況模擬 技術整合研究(I),國家地震工程研究中心,臺北 市。
- 14.葉錦勳、簡文郁,2007,地震危害度分析與震災 境況模擬技術整合研究(II),國家地震工程研究中 心,臺北市。
- 15.葉錦勳等,2010,住宅地震保險風險評估模型技 術手冊,國家地震工程研究中心。

投稿日期:2012/03/28。

- 送審日期:2012/03/29。
- 審畢日期:2012/04/20。
- 修改日期:2012/04/23。
- 接受日期:2012/04/24。