Data Mining

Lecture 5: Classification

Primary References

- Michael J. A. Berry and Gordon S. Linoff (2004), Data Mining Techniques for Marketing, Sales, and Customer Relationship Management, 2nd ed., Wiley
- Introduction to Data Mining and Knowledge Discovery, Third Edition, ISBN: 1-892095-02-5 (Can be downloaded via website for free)
- Tan, P., Steinbach, M., and Kumar, V. (2006) <u>Introduction to Data Mining</u>, 1st edition, Addison-Wesley, ISBN: 0-321-32136-7.
- Vasant Dhar and Roger Stein, Prentice-Hall (1997), Seven Methods for Transforming Corporate Data Into Business Intelligence
- H. Witten and E. Frank (2005), <u>Data Mining: Practical Machine Learning Tools and Techniques</u>, 2nd edition, Morgan Kaufmann, ISBN: 0-12-088407-0, closely tied to the WEKA software.
- Ethem ALPAYDIN, Introduction to Machine Learning, The MIT Press, October 2004, ISBN 0-262-01211-1
- J. Han and M. Kamber (2000) <u>Data Mining: Concepts and Techniques</u>, Morgan Kaufmann. Database oriente. Slides for Textbook —Classification, http://www.cs.sfu.ca
- 資料探勘,丁一賢(2005)

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc

Classification

CART: Classification and Regression Trees

CHAID: Chi-Square Automatic Interaction Detector

Ref: 資料探勘,丁一賢 (2005)

決策樹演算法

- ID3 (Iterative Dichotomizer 3)
 - 可處理離散型資料。
 - 兼顧高分類正確率以及降低決策樹的複雜度。
 - 必須將連續型資料作離散化的程序。
- CART (Classification and Regression Trees)
 - 是以每個節點的動態臨界值作為條件判斷式。
 - CART藉由單一輸入的變數函數, 在每個節點分隔資料, 並建立一個二元決策樹。
 - CART是使用 Gini Ratio來衡量指標, 如果分散的指標程度很高,表示資料中分佈許多類別, 相反的, 如果指標程度越低, 則代表單一類別的成員居多。

決策樹演算法

- C4.5
 - 改良自ID3演算法。
 - 先建構一顆完整的決策樹, 再針對每一個內部節點, 依 使用者定義的預估錯誤率(Predicted Error Rate)來作決策 樹修剪的動作。
 - 不同的節點, 特徵值離散化結果是不相同的。
- CHAID (Chi-Square Automatic Interaction Detector)
 - 利用卡方分析(Chi-Square Test)預測二個變數是否需要 合併,如能夠產生最大的類別差異的預測變數,將成為 節點的分隔變數。
 - 計算節點中類別的 P値 (P-Value), 以P値大小來決定決策 樹是否繼續生長, 所以不需像C4.5或CART要再做決策樹 修剪的動作。

決策樹演算法之比較

	作者	資料屬性	分割規則	修剪樹規則
ID3	Quinlan (1979)	離散型資料	Entropy ` Gain Ratio	Predicted Error Rate
C4.5	Quinlan (1993)	離散型資料	Gain Ratio	Predicted Error Rate
CHAID	Kass (1980)	離散型資料	Chi-Square Test	No Pruning
CART	Briemen (1984)	離散與 連續型資料	Gini Index	Entire Error Rate

Illustrating Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Training Dataset

Outlook	Tempreature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Output: A Decision Tree for "Play tennis or not"

Another Example

Rule-based Classifier:

```
If tear production rate = reduced then recommendation = none.
If age = young and astigmatic = no and tear production rate = normal
   then recommendation = soft
If age = pre-presbyopic and astigmatic = no and tear production
   rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope and
   astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no and
   tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes and
   tear production rate = normal then recommendation = hard
If age = young and astigmatic = yes and tear production rate =
    normal
   then recommendation = hard
If age = pre-presbyopic and spectacle prescription = hypermetrope
   and astigmatic = yes then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope
   and astigmatic = yes then recommendation = none
```

Rules are mutually exclusive and exhaustive before pruning.

From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive
Rule set contains as much information as the
tree

Rules Can Be Simplified

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Initial Rule: (Refund=No) \land (Status=Married) \rightarrow No

Simplified Rule: (Status=Married) → No

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

 Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

 Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Example: Good & Poor Splits

Tests for Choosing Best Split

- Purity (Diversity) Measures:
 - Gini (population diversity)
 - Entropy (information gain)
 - Information Gain Ratio
 - Chi-square Test

Attribute Selection Measure

- Information gain (ID3/C4.5)
 - All attributes are assumed to be categorical
 - Can be modified for continuous-valued attributes
- Gini index (IBM IntelligentMiner)
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Assume there are two classes, P and N
 - Let the set of examples S contain p elements of class P and n
 elements of class N
 - The amount of information, needed to decide if an arbitrary example in S belongs to P or N is defined as

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Gini Index (IBM Intelligent Miner)

• 樣本分佈愈平均,資訊量愈大,亂度愈大,Gini值愈大,

$$Gini(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

 $p(j \mid t)$ is the relative frequency of class j at node t).

Gini(Root Node) = $1 - (0.5^2 + 0.5^2) = 0.5$

 $Gini_1$ (Leaf node) = 1 - (0.1² + 0.9²) = 0.18

 $Gini_2$ (Leaf node) = 1 - (0.1² + 0.9²) = 0.18

 $Gini_t$ (Leaf node) = 10/20*0.18 + 10/20*0.18 = 0.18

Information Gain in Decision Tree Induction

- Assume that using attribute A a set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$
 - If S_i contains p_i examples of P and n_i examples of N, the entropy, or the expected information needed to classify objects in all subtrees S_i is

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

• The encoding information that would be gained by branching on A Gain(A) = I(p,n) - E(A)

Attribute Selection by Information Gain Computation

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"
- \blacksquare I(p, n) = I(9, 5) = 0.940
- Compute the entropy for age:

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.69$$

Hence

$$Gain(age) = I(p,n) - E(age)$$

= 0.94 - 0.69 = 0.25

Similarly

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees

• DEMO 1

http://www.cs.ualberta.ca/~aixplore/learning/De
 cisionTrees/InterArticle/2-DecisionTree.html

Demo 2

- SAS Enterprise Miner
- Ex. ID Potential Customers

Decision Tree Advantages

- 1. Easy to understand
- 2. Map nicely to a set of business rules
- 3. Applied to real problems
- 4. Make no prior assumptions about the data
- 5. Able to process both numerical and categorical data

Decision Tree Disadvantages

- 1. Output attribute must be categorical
- 2. Limited to one output attribute
- 3. Decision tree algorithms are unstable
- 4. Trees created from numeric datasets can be complex

Bayesian Theorem

- 假設 <sup>C₁,C₂,C₃,...C_n</sub>是樣本空間(sample space) S 的分割, 且有一事件A, 則有兩定理存在:
 </sup>
 - 總機率法則(Law of Total Probability) $P(A) = \sum P(C_i)P(A|C_i)$
 - 貝氏定理(Bayes' Rule)

$$P(C_{j}|A) = \frac{P(C_{j})P(A|C_{j})}{\sum P(C_{i})P(A|C_{i})}$$

- 其中
 - P(C_i):事前機率(Prior Probability)
 - P(A|C_i): 樣本機率(Sample Probability)
 - P(C,|A):事後機率(Posterior Probability)
 - Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Bayesian classification

- The classification problem may be formalized using a-posteriori probabilities:
- P(C|X) = prob. that the sample tuple $X = \langle x_1, ..., x_k \rangle$ is of class C.

• E.g. P(class=N | outlook=sunny,windy=true,...)

 Idea: assign to sample X the class label C such that P(C|X) is maximal

Estimating a-posteriori probabilities

Bayes theorem:

$$P(C|X) = P(X|C) \cdot P(C) / P(X)$$

- P(X) is constant for all classes
- P(C) = relative freq of class C samples
- C such that P(C|X) is maximum =
 C such that P(X|C)·P(C) is maximum
- Problem: computing P(X|C) is unfeasible!

Bayesian Classifiers

 Consider each attribute and class label as random variables

- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C | A_1, A_2,...,A_n)$

 Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate P(A₁, A₂, ..., A_n | C)?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i)... P(A_n | C_i)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j .
 - New point is classified to C_j if $P(C_j)$ Π $P(A_i | C_j)$ is maximal.

Play-tennis example: estimating $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 2/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

Play-tennis example: classifying X

An unseen sample X = <rain, hot, high, false>

- P(X|p)·P(p) =
 P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p)
 = 3/9·2/9·3/9·6/9·9/14 = 0.010582
- P(X|n)·P(n) =
 P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n)
 = 2/5·2/5·4/5·2/5·5/14 = 0.018286

Sample X is classified in class n (don't play)

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
    P(X|Class=No) = P(Refund=No|Class=No)
        × P(Married| Class=No)
        × P(Income=120K| Class=No)
        = 4/7 × 4/7 × 0.0072 = 0.0024
```

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No
```

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N) => Mammals

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Neural Networks

Advantages

- prediction accuracy is generally high
- robust, works when training examples contain errors
- output may be discrete, real-valued, or a vector of several discrete or real-valued attributes
- fast evaluation of the learned target function

Criticism

- long training time
- difficult to understand the learned function (weights)
- not easy to incorporate domain knowledge

Artificial Neural Networks (ANN)

X ₁	X_2	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t) \quad o$$

$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

General Structure of ANN

Nearest Neighbor Classifiers

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Discussion on the k-NN Algorithm

- The k-NN algorithm for continuous-valued target functions
 - Calculate the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query point x_a $w = \frac{1}{d(x_q, x_i)^2}$
 - giving greater weight to closer neighbors
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes.
 - To overcome it, elimination of the least relevant attributes.

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

Nearest Neighbor Classification

- Choosing the value of k:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from

other classes

What Is Prediction?

- Prediction is similar to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for prediction is regression
 - Linear and multiple regression
 - Non-linear regression
 - Logit/probit model
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions

Predictive Modeling in Databases

- Predictive modeling: Predict data values or construct generalized linear models based on the database data.
- Determine the major factors which influence the prediction

迴歸分析

- 迴歸分析為統計分析的一種方法, 主要在了解自 變數(Independent Variable)與依變數(Dependent Variable)間之數量關係。
- 迴歸分析依自變數個數可分為不同的類型
 - 單一自變數時,則稱為簡單迴歸(Simple Regression)
 - 自變數不只一個時,稱為複迴歸(Multiple Regression)
- 迴歸方程式又可分為
 - 直線迴歸(Linear Regression)
 - 非直線性迴歸

Regress Analysis and Log-Linear Models in Prediction

- Linear regression: $Y = \alpha + \beta X$
 - Two parameters , α and β specify the line and are to be estimated by using the data at hand.
 - using the least squares criterion to the known values of Y₁,
 Y₂, ..., X₁, X₂,
- Multiple regression: Y = b0 + b1 X1 + b2 X2.
 - Many nonlinear functions can be transformed into the above.
- Log-linear models:
 - The multi-way table of joint probabilities is approximated by a product of lower-order tables.
 - Probability: $p(a, b, c, d) = \alpha ab \beta ac \chi ad \delta bcd$

Linear Regression

 決定係數(Coefficient of Determination)則可估以直線迴歸 方程式預測依變數的準確度,為相關係數r的平方。

•
$$\Sigma$$
 $r^2 = \frac{SSR}{SST} = \frac{\sum_{i=1}^n \left(\widehat{Y}_i - \overline{Y}\right)^2}{\sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2}$

- 決定係數永遠介於0到1之間
- 判定係數愈接近1,表示對依變數的解釋能力愈好,迴歸分析預測的結果則愈可靠。
- 判定係數愈接近0,表示預測結果的可信度愈低。

Logit Model

- Logit Model 的特性
 - 當研究結果的依變數是離散型。
 - 用於處理類別資料的問題。
 - 適用於依變數是屬於質化變數(非量化)的迴歸 模型。
 - 可克服自變數須服從常態分配的假設。

Logit/Probit Model

- 一個簡單的範例 (dep. var. is binary output)
 - 資料變數呈現只有成功或失敗兩種可能情況,故令 P(X) 表示某種事件發生的機率,它受因素X的影響,若 X 與 P(X) 關係滿足:

$$P(X) = \frac{e^{f(x)}}{1 + e^{f(x)}} \qquad , \qquad 0 \le P(x) \le 1$$

其中,
$$e$$
 為常數 , $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$
Odds ratio = p/(1-p) = $e^{f(x)}$, logit = $\ln(p/(1-p)) = f(x)$

Logistic Regression函數圖形

Classification Accuracy: Estimating Error Rates

- Partition: Training-and-testing
 - use two independent data sets, e.g., training set (2/3), test
 set(1/3)
 - used for data set with large number of samples
- Cross-validation
 - divide the data set into k subsamples
 - use k-1 subsamples as training data and one sub-sample as test data --- k-fold cross-validation
 - for data set with moderate size
- Bootstrapping (leave-one-out)
 - for small size data

Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ε = 0.35
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Summary

- Classification is an extensively studied [kdnugget.com] problem (mainly in statistics, machine learning & neural networks)
- Classification is probably one of the most widely used data mining techniques with a lot of extensions
- Scalability is still an important issue for database applications: thus combining classification with database techniques should be a promising topic
- Research directions: classification of non-relational data, e.g., text, spatial, multimedia, etc..